Reflections on artificial intelligence and librarianship

Main Article Content

Silvana Grazia Temesio Vizoso

Abstract






Artificial intelligence (AI) manifests itself in algorithms whose performance is difficult to predict or explain. These algorithms are applied to issues in the lives of citizens and have begun to be used by electronic government. The application of AI to all fields of knowledge is currently being investigated. Some developments in information science are briefly referred to in the note. Some of the challenges posed by the application of AI such as bias and opacity are presented. Facing these challenges are opinions from information ethics, the free software movement, and academic research to improve the explainability of AI (XAI). Finally, the Electronic Government strategy in Uruguay is succinctly detailed.The reflection is open and in particular the inclusion of these topics in the academic training is recommended in our career.






Downloads

Download data is not yet available.

Article Details

How to Cite
Temesio Vizoso, S. G. (2022). Reflections on artificial intelligence and librarianship. Palabra Clave (La Plata), 11(2), e159. https://doi.org/10.24215/18539912e159
Section
Notes for discussion
Author Biography

Silvana Grazia Temesio Vizoso, Universidad de la República. Facultad de Información y Comunicación

Profesor adjunto Base de datos Profesor adjunto Redes y sistemas

References

AI HLEG (2019). High-Level Expert Group on Artificial Intelligence: ethics guidelines for trustworthy AI. Recuperado de https://digital-strategy.ec.europa.eu/en/policies/expert-group-ai

AI4IA (2020). Artificial Intelligence for Information Accessibility final conference report. Recuperado de https://www.i-c-i-e.org/post/ai4ia-final-conference-report

Behr, A. et al. (2021). Enhancing learning object repositories with ontologies. In World Conference on Information Systems and Technologies (pp. 463-472). Springer, Cham. Recuperado de http://repositorioaberto.uab.pt/handle/10400.2/10693?locale=en DOI: https://doi.org/10.1007/978-3-030-72654-6_44

Capurro, R. (2005). Ética de la información. Un intento de ubicación. Códices, 1(2), 89-97. Recuperado de https://ciencia.lasalle.edu.co/cgi/viewcontent.cgi?article=1016&context=co

Capurro, R. (2019). Futuros digitales: breve ensayo sobre la vida sostenible en la era digital. Mètode: revista de difusión de la investigación, 3(102), 32-37. Recuperado de https://metode.es/wp-content/uploads/2019/09/102ES-DOC-capurro-futuros-digitales.pdf

Gebru, T. et al. (2021). Datasheets for datasets. Recuperado de https://arxiv.org/pdf/1803.09010.pdf DOI: https://doi.org/10.1145/3458723

Halal, W., Kolber, J., Davies, O. & Global, T. (2016). Forecasts of AI and future jobs in 2030: muddling through likely, with two alternative scenarios. Journal of futures studies, 21(2), 83-96.

Humphreys, P. (2009). The philosophical novelty of computer simulation methods. Synthese, 169(3), 615–626. DOI: https://doi.org/10.1007/s11229-008-9435-2

Martínez Méndez, F. J., Pastor-Sánchez, J-A. & López Carreño, R. (2019). Linked open data en bibliotecas: estado del arte. Information research, 25(2). Recuperado de http://InformationR.net/ir/25-2/paper862.html

Rodríguez-Ortega, N. (2018). Cinco ejes para pensar las humanidades digitales como proyecto de un nuevo humanismo digital. Humanidades digitales: sociedades, políticas, saberes Artnodes (22), 1-6. http://dx.doi.org/10.7238/a.v0i22.3263 DOI: https://doi.org/10.7238/a.v0i22.3263

Temesio Vizoso, S. G. (2021). Inteligencia artificial en GLAM: políticas de información. En VI Jornadas de Intercambio y Reflexión acerca de la Investigación en Bibliotecología, La Plata, Argentina. Recuperado de https://www.memoria.fahce.unlp.edu.ar/library?a=d&c=eventos&d=Jev14285

Tomsett, R., Braines, D., Harborne, D., Preece, A. & Chakraborty, S. (2018). Interpretable to whom? A role-based model for analyzing interpretable machine learning systems. Recuperado de https://arxiv.org/ftp/arxiv/papers/1806/1806.07552.pdf

Wooldridge, M. & Jennings, N. R. (1995). Intelligent agents: theory and practice. The knowledge engineering review, 10(2), 115-152. DOI: https://doi.org/10.1017/S0269888900008122

Zednik, C. (2021). Solving the black box problem: a normative framework for explainable artificial intelligence. Philosophy & technology, 34(2), 265-288. DOI: https://doi.org/10.1007/s13347-019-00382-7