Evolution and multidisciplinary scope of three bibliometric analytical techniques
Main Article Content
Abstract
Objective: the current study aims to analyze the behavior of scientific production on three bibliometric analysis techniques: co-citation, bibliographic coupling, and terms co-occurrence. Methodology: the Web of Science is used as data source. Productivity and impact measures are used to characterize the behavior of each technique practices. Two new indices to determine the multidisciplinary scope of research are proposed, which are complemented by documentary analysis to interpret the results and establish the reference frameworks. Results: the leading authors, institutions and countries are identified, as well as the number of serial publications where the research was disseminated, and the Web of Science subject categories where they are classified. The growing evolution of the literature that uses these techniques for the representation and analysis of knowledge domains was evidenced. The technological domains predominated in the thematic production core, although in the thematic citations core there was also the presence of biomedical, economic and social environments. Conclusions: the existence of a highly productive core of institutions and countries evidences the sustained, intensive and extensive use of these techniques, given the global community recognition of their importance and validity. The proposed indicators allowed to identify the multidisciplinary and interdisciplinary nature of the scientific production related to these analytical techniques. In this way, the influence of metrics and their techniques is made visible, which transcend the limits of the knowledge domain that originated them, from theoretical and meta-theoretical proposals through multiple disciplinary spaces.
Downloads
Article Details
References
í…ström, F. (2007). Changes in the LIS research front: Time”sliced cocitation analyses of LIS journal articles, 1990–2004. Journal of the American Society for Information Science and Technology, 58(7), 947-957.
Boyack, K. W., Börner, K. y Klavans, R. (2009). Mapping the structure and evolution of chemistry research. Scientometrics, 79(1), 45-60.
Boyack, K. W. y Klavans, R. (2010). Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately? Journal of the American Society for Information Science and Technology, 61(12), 2389-2404.
Boyack, K. W., Klavans, R. y Börner, K. (2005). Mapping the backbone of science. Scientometrics, 64(3), 351-374.
Bullinaria, J. A. y Levy, J. P. (2007). Extracting semantic representations from word co-occurrence statistics: A computational study. Behavior research methods, 39(3), 510-526.
Bullinaria, J. A. y Levy, J. P. (2012). Extracting semantic representations from word co-occurrence statistics: stop-lists, stemming, and SVD. Behavior research methods, 44(3), 890-907.
Callon, M., Courtial, J. P., Turner, W. A. y Bauin, S. (1983). From translation to network-The co-word analysis. Social science information, 22(2), 191-235.
Chalavarias, D. y Cointet, J. P. (2008). Bottom-up scientific field detection for dynamical and hierarchical science mapping, methodology and case study. Scientometrics, 75(1), 37-50.
Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E. y Herrera, F. (2011). An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the fuzzy sets theory field. Journal of informetrics, 5(1), 146-166.
Cobo, M. J., Martínez, M. Á., Gutiérrez-Salcedo, M., Fujita, H. y Herrera-Viedma, E. (2015). 25 years at knowledge-based systems: a bibliometric analysis. Knowledge-based systems, 80, 3-13.
De Bellis, N. (2009). Bibliometrics and citation analysis. Lanham, MD: Scarecrow.
Eom, S. (2008). All author cocitation analysis and first author cocitation analysis: a comparative empirical analysis. Journal of informetrics, 2(1), 53-64.
Glänzel, W. (2012). Bibliometric methods for detecting and analysing emerging research topics. El profesional de la información, 21(1), 194-201.
Hjorland, B. (2002). Domain analysis in Information Science: Eleven approaches traditional as well as innovative. Journal of the American Society for Information Science, 58(4), 422-462.
Katsurai, M. y Ono, S. (2019). TrendNets: mapping emerging research trends from dynamic co-word networks via sparse representation. Scientometrics, 121(3), 1583-1598.
Kessler, M. M. (1963). Bibliographic coupling extended in time: ten case histories. Information storage and retrieval, 1(4), 169-187.
Latour, B. (2011). Networks, societies, spheres: reflections of an actor-network theorist. International journal of communication, 5, 796-810.
Leydesdorff, L. y Rafols, I. (2011). Indicators of the interdisciplinarity of journals: Diversity, centrality, and citations. Journal of Informetrics, 5(1), 87-100.
Leydesdorff, L. y Welbers, K. (2011). The semantic mapping of words and co-words in contexts. Journal of informetrics, 5(3), 469-475.
Liu, X., Zhang, L. y Hong, S. (2011). Global biodiversity research during 1900–2009: a bibliometric analysis. Biodiversity and conservation, 20(4), 807-826.
MacRoberts, M. H. y MacRoberts, B. R. (2018). The mismeasure of science: Citation analysis. Journal of the Association for Information Science and Technology, 69(3), 474-482.
Marshakova, I. V. (1973). A system of document connection based on references. Scientific and technical information serial of VINITI, 6(2), 3-8.
McCain, K. W. (1991). Mapping economics through the journal literature: An experiment in journal cocitation analysis. Journal of the American Society for Information Science, 42(4), 290.
McCain, K. W. y Whitney, P. J. (1994). Contrasting assessments of interdisciplinarity in emerging specialties: The case of neural networks research. Knowledge, 15(3), 285-306.
Meyer-Brötz, F., Stelzer, B., Schiebel, E. y Brecht, L. (2018). Mapping the technology and innovation management literature using hybrid bibliometric networks. International Journal of Technology Management, 77(4), 235-286.
Milojević, S., Sugimoto, C. R., Yan, E. y Ding, Y. (2011). The cognitive structure of library and information science: Analysis of article title words. Journal of the American Society for Information Science and Technology, 62(10), 1933-1953.
Morris, S. A. (2005). Manifestation of emerging specialties in journal literature: A growth model of papers, references, exemplars, bibliographic coupling, cocitation, and clustering coefficient distribution. Journal of the American Society for Information Science and Technology, 56(12), 1250-1273.
Moya-Anegón, F., Vargas-Quesada, B., Herrero-Solana, V., Chinchilla-Rodríguez, Z., Corera-Álvarez, E. y Muñoz-Fernández, F. J. (2004). A new technique for building maps of large scientific domains based on the cocitation of classes and categories. Scientometrics, 61(1), 129-145.
Nicolaisen, J. (2007). Citation analysis. Annual review of information science and technology, 41(1), 609-641.
Olmeda-Gómez, C., Ovalle-Perandones, M. A. y Perianes-Rodríguez, A. (2017). Co-word analysis and thematic landscapes in Spanish information science literature, 1985–2014. Scientometrics, 113(1), 195-217.
Persson, O. (1994). The intellectual base and research fronts of JASIS 1986–1990. Journal of the American society for information science, 45(1), 31-38.
Persson, O. (2001). All author citations versus first author citations. Scientometrics, 50(2), 339-344.
Rip, A. y Courtial, J. (1984). Co-word maps of biotechnology: an example of cognitive scientometrics. Scientometrics, 6(6), 381-400.
Shiau, W. L., Dwivedi, Y. K. y Yang, H. S. (2017). Co-citation and cluster analyses of extant literature on social networks. International Journal of Information Management, 37(5), 390-399.
Seale, C., Charteris-Black, J., MacFarlane, A. y McPherson, A. (2010). Interviews and internet forums: a comparison of two sources of qualitative data. Qualitative health research, 20(5), 595-606.
Seale, C., Ziebland, S. y Charteris-Black, J. (2006). Gender, cancer experience and internet use: a comparative keyword analysis of interviews and online cancer support groups. Social science & medicine, 62(10), 2577-2590.
Small, H. (1973). Co”citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society for information Science, 24(4), 265-269.
Small, H. (2003). Paradigms, citations, and maps of science: A personal history. Journal of the American Society for Information Science and Technology, 54(5), 394-399.
Song, J., Zhang, H. y Dong, W. (2016). A review of emerging trends in global PPP research: analysis and visualization. Scientometrics, 107(3), 1111-1147.
Tang, O. y Musa, S. N. (2011). Identifying risk issues and research advancements in supply chain risk management. International Journal of production economics, 133(1), 25-34.
Thijs, B., Schiebel, E. y Glänzel, W. (2013). Do second-order similarities provide added-value in a hybrid approach? Scientometrics, 96(3), 667-677.
Tian, Y., Wen, C. y Hong, S. (2008). Global scientific production on GIS research by bibliometric analysis from 1997 to 2006. Journal of informetrics, 2(1), 65-74.
Vega-Almeida, R. L. (2010). Ciencia de la información y paradigma social: enfoque histórico, epistemológico y bibliométrico para un análisis de dominio (Tesis doctoral). Universidad de Granada, Granada. Recuperado de https://digibug.ugr.es/handle/10481/15418
Wang, H., He, Q., Liu, X., Zhuang, Y. y Hong, S. (2012). Global urbanization research from 1991 to 2009: a systematic research review. Landscape and urban planning, 104(3-4), 299-309.
Wang, X., Cheng, Q. y Lu, W. (2014). Analyzing evolution of research topics with NEViewer: a new method based on dynamic co-word networks. Scientometrics, 101(2), 1253-1271.
White, H. D. y Griffith B. C. (1981). Author co-citation: A literature measure of intellectual structure. Journal of American Society for Information Science, 32(3), 163-172.
White, H. D. y McCain, K. (1998). Visualizing a discipline: An author co-citation analysis of Information Science, 1972-1995. Journal of the American Society for information Science, 49(4), 327-355.
Yang, S., Han, R., Wolfram, D. y Zhao, Y. (2016). Visualizing the intellectual structure of information science (2006–2015): introducing author keyword coupling analysis. Journal of informetrics, 10(1), 132-150.
Zhang, Q. R., Li, Y., Liu, J. S., Chen, Y. D. y Chai, L. H. (2017). A dynamic co-word network-related approach on the evolution of China’s urbanization research. Scientometrics, 111(3), 1623-1642.
Zhao, D., y Strotmann, A. (2008a). Evolution of research activities and intellectual influences in Informa-tion Science 1996-2005: Introducing author bibliographic coupling analysis. Journal of the American Society for Information Science and Technology, 59(13), 2070-2086.
Zhao, D. y Strotmann, A. (2008b). Comparing all-author and first-author co-citation analyses of Information Science. Journal of informetrics, 2(3), 229-239.
Zhao, D. y Strotmann, A. (2015). Analysis and visualization of citation networks. Synthesis lectures on information concepts, retrieval, and services, 7(1), 1-207.
Zhao, D. y Strotmann, A. (2020). Telescopic and panoramic views of library and information science research 2011–2018: a comparison of four weighting schemes for author co-citation analysis. Scientometrics, 124(1), 255-270.
Zhuang, Y., Liu, X., Nguyen, T., He, Q. y Hong, S. (2013). Global remote sensing research trends during 1991–2010: a bibliometric analysis. Scientometrics, 96(1), 203-219.