Input/output indicators of Ibero-American science: how similar are the classifications based on the RICYT and Scimago indicators?

Main Article Content

Edgardo Ortiz-Jaureguizar
Julieta Victoria Traverso

Abstract

The objective of this study is to evaluate the congruence between the country classifications obtained from the Scimago Journal and Country Rank (SCIJCR) indicators, and those provided by the RICYT, taking as study units 11 Ibero-American countries, during 2006-2017. Thirty-four input/output indicators were taken as variables, 11 from SCIJCR, and 23 from RICYT. The similarity relationships among the countries and the indicators were represented by means of phenograms (Ward's method) and the congruence among the classifications of the countries was represented by strict consensus trees and quantified by means of a consensus index. The main conclusions of the study indicate that: 1) The classification of countries based on the 34 indicators corresponds to their size (e.g., socioeconomic development, population) and to the respective scientific traditions; 2) The indicators show a complex grouping patterns, not observing groupings based on the different typologies (e.g., production, impact, input, context); 3) The vast majority of the SCIJCR indicators show close mutual links, producing redundant information; 4) The percentage of international collaboration is only related to values ”‹”‹of moderate similarity with the citations per document, so it does not agree with the idea that the number of citations is directly proportional to international collaboration; 5) Taking into account the results obtained, the most profitable investments in terms of production, impact, and impact and production, are those measured by graduation indicators (graduates), R&D spending (in dollars, expressed in PPP), and number of researchers in R&D; 6) The lack of congruence observed when comparing country rankings from only one source (i.e., SCIJCR or RICYT) contradicts the simplistic idea that scientific results can be predicted only from invested resources; 7) Comparing the classification of countries based on all the indicators with those produced based on one or the other (i.e., SCIJCR or RICYT) produces few common groups. This can be explained from issues intrinsic to the analysis, such as the different number of indicators, and the redundancy of the information provided by the vast majority of the SCIJCR. This means that the SCIJCR indicators have a lower weight than those of the RICYT, when it comes to differentiating groups of countries.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ortiz-Jaureguizar, E., & Traverso, J. V. (2020). Input/output indicators of Ibero-American science: how similar are the classifications based on the RICYT and Scimago indicators?. Palabra Clave (La Plata), 10(1), e099. https://doi.org/10.24215/18539912e099
Section
Dossier Estudios métricos de la información: abordajes teóricos, metodológicos y empíricos
Author Biography

Edgardo Ortiz-Jaureguizar, Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. LASBE - CONICET

Profesor Titular de Mastozoología (FCNyM-UNLP) Directoer del LASBE (FCNyM.UNLP) Secretario de Investigación y Transferencia (FCNyM-UNLP) Investigador Independiente (CONICET)

References

Adams, J. D., Black, G. C., Clemmons, J. R. & Stephan, P. E. (2005). Scientific teams and institutional collaborations: evidence from U.S. universities, 1981-1999. Research policy, 34(3), 259-285. https://doi.org/10.1016/j.respol.2005.01.014

Albornoz, M. (1994). Indicadores en ciencia y tecnologí­a. Redes, 1(1), 133-144. Recuperado de http://www.redalyc.org/articulo.oa?id=90711298006

Chavarro, D., Tang, P. & Rí fols, I. (2017). Why researchers publish in non-mainstream journals: Training, knowledge bridging, and gap filling. Research policy, 46, 1666-1680. http://dx.doi.org/10.1016/j.respol.2017.08.002

Chinchilla-Rodrí­guez, Z., Zacca-González, G., Vargas-Quesada, B. & Moya-Anegón, F. de. (2015). Latin American scientific output in Public Health: combined analysis using bibliometric, socioeconomic and health indicators. Scientometrics, 102, 609-628. https://doi.org/10.1007/s11192-014-1349-9

Crisci, J. V., y López Armengol, M. F. (1983). Introducción a la teorí­a y práctica de la taxonomí­a numérica. Washington: Organización de los Estados Americanos.

De Filippo, D. F., Morillo, F. & Fernández, M. T. (2008). Indicadores de colaboración cientí­fica del CSIC con Latinoamérica en bases de datos internacionales. Revista española de documentación cientí­fica, 31(1), 66-84. http://dx.doi.org/10.3989/redc.2008.v31.i1.413

Falagas, M. E., Kouranos, V. D., Arencibia-Jorge, R., y Karageorgopoulos, D. E. (2008). Comparison of SCImago journal rank indicator with journal impact factor. The FASEB journal, 22, 2623-2628. https://doi.org/10.1096/fj.08-107938

Farris, J. S. (1971). The hypothesis of nonspecificity and taxonomic congruence. Annual Review of ecology and systematics, 2, 277-302. https://doi.org/10.1146/annurev.es.02.110171.001425

Filliben, J. J. (1975). The probability plot correlation coefficient test for normality. Technometrics, 17(1), 111-117. https://doi.org/10.1080/00401706.1975.10489279

Garcí­a-Pachón, E. & Arencibia-Jorge, E. (2014). Comparación del factor de impacto y el í­ndice SCImago Journal Rank en las revistas del sistema respiratorio. Archives of bronconeumology, 50(7), 308-309. https://doi.org/10.1016/j.arbres.2013.10.006

Gingras, Y. & Khelfaoui, M. (2018). Assessing the effect of the United States’ “citation advantage” on other countries’ scientific impact as measured in the Web of Science (WoS) database. Scientometrics, 114(2), 517-532. https://doi.org/10.1007/s11192-017-2593-6

Hammer, í˜., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia electronica, 4(1), 1-9.

Hermes-Lima, M., Santos, N.C.F., Alencastro, A.C.R., y Ferreira, S.T. (2007). Whither Latin America? trends and challenges of science in Latin America. IUBMB Life, 59, 199–210. https://doi.org/10.1080/15216540701258751

Inglesi-Lotz, R. & Pouris, A. (2013). The influence of scientific research output of academics on economic growth in South Africa: an autoregressive distributed lag (ARDL) application. Scientometrics, 95(1), 129-139. https://doi.org/10.1007/s11192-012-0817-3

Inglesi-Lotz, R., Chang, T. & Gupta, R. (2015). Causality between research output and economic growth in BRIC. Quality and quantity, 49, 167-176. https://doi.org/10.1007/s11135-013-9980-8

King, D. A. (2004). The scientific impact of nations. What different countries get for their research spending? Nature, 430, 311–316. https://doi.org/10.1038/430311a

Lee, L. C., Lin, P. H., Chuang, Y. W. & Lee, Y. Y. (2011). Research output and economic productivity: A Granger causality test. Scientometrics, 89, 465–478. https://doi.org/10.1007/s11192-011-0476-9

Leydesdorff, L. (2005). Evaluation of research and evolution of science indicators. Current science, 89(9), 1510-1517.

Mickevich, M. F. (1978). Taxonomic congruence. Systematic zoology, 27, 143-158. https://doi.org/10.2307/2412969

Miguel, S. E. y Moya-Anegón, F. de. (2009). La ciencia argentina bajo la lupa de los indicadores cienciométricos. Una mirada crí­tica de la realidad cientí­fica argentina. La Plata: Al Margen.

Moya-Anegón, F. de & Herrero-Solana, V. (1999). Science in America Latina: a comparison of bibliometric and scientific-technical indicators. Scientometrics, 46(2), 299–320. https://doi.org/10.1007/BF02464780

Murtagh, F. & Legendre, P. (2014). Ward's hierarchical agglomerative clustering method: which algorithms implement Ward's criterion? Journal of classification, 31(3): 274-295.

Ortiz-Jaureguizar, E. (2019). Exploración de relaciones entre indicadores bibliométricos y otros indicadores del contexto económico, social y productivo. En S. E. Miguel (Coord.), Actas del Workshop Iberoamericano de Estudios métricos de la actividad cientí­fica orientada a temas locales/regionales (La Plata, 2018) (pp. 109-115). Universidad Nacional de La Plata, Facultad de Humanidades y Ciencias de la Educación. Recuperado de https://www.libros.fahce.unlp.edu.ar/index.php/libros/catalog/book/130

Ortiz-Jaureguizar, E.; Miguel, S. E.; González, C. & Posadas, P. (2019). La producción cientí­fica argentina en el contexto mundial: un análisis comparado empleando los indicadores de Scimago Journal and Country Rank. En S. E. Miguel (Coord.), Actas de las V Jornadas de intercambio y reflexión acerca de la investigación en Bibliotecologí­a, La Plata, 23 y 24 de noviembre de 2017 (pp. 175-195). Recuperado de http://www.memoria.fahce.unlp.edu.ar/libros/pm.725/pm.725.pdf

Ortiz-Jaureguizar, E., Miguel, S. E. y Posadas, P. (2015). Relaciones de similitud y valor discriminativo de los indicadores bibliométricos: los indicadores de Scimago Journal & Country Rank en las revistas generalistas de Paleontologí­a. En Actas de las 4as Jornadas de intercambio y reflexión acerca de la investigación en Bibliotecologí­a. Recuperado de http://jornadabibliotecologia.fahce.unlp.edu.ar/jornadas-2015/archivos-pdf/jirib2015 ­_ORTIZ_texto.pdf

Palacio, F. X., Apodaca, M. J. y Crisci, J. V. (2020). Análisis multivariado para datos biológicos: teorí­a y su aplicación utilizando el lenguaje R. Ciudad Autónoma de Buenos Aires: Fundación de Historia Natural Félix de Azara.

Persson, O., Glänzel, W. & Danell, R. (2004). Inflationary bibliometrics values: the role of scientific collaboration and the need for relative indicators in evaluative studies. Scientometrics, 60(3), 421–432. https://doi.org/10.1023/B:SCIE.0000034384.35498.7d

Ploszaj, A., Celinska-Janowicz, D. & Olechnicka, A. (2018). Core-periphery relations in international research collaboration. In R. Costas, T. Franssen y A. Yegros-Yegros (Edits.), Proceedings of the 23rd International Conference on Science and Technology Indicators (pp. 1322-1327). Leiden, The Netherlands. Recuperado de https://openaccess.leidenuniv.nl/bitstream/handle/1887/65273/STI2018_paper_218.pdf?sequence=1

Rí­os Gómez, C. & Herrero-Solana, V. (2005). La producción cientí­fica latinoamericana y la ciencia mundial: una revisión bibliográfica (1989-2003). Revista interamericana de bibliotecologí­a, 28(1), 43-61. Recuperado de http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-09762005000100003&lng=en&tlng=es

Rohlf, F. J. (1982). Consensus indices for comparing classifications. Mathematical biosciences, 59(1), 131-144. https://doi.org/10.1016/0025-5564(82)90112-2

Rohlf, F. J. (2018). NTSYSpc: Numerical Taxonomy System. ver. 2.21c. New York: Applied Biostatistics, Inc., Port Jefferson.

Sancho Lozano, R. (2002). Indicadores de los sistemas de ciencia, tecnologí­a e innovación. Economí­a industrial, 343, 97-109. Recuperado de https://www.mincotur.gob.es/Publicaciones/Publicacionesperiodicas/EconomiaIndustrial/RevistaEconomiaIndustrial/343/097-SANCHO.pdf

Sandoval-Romero, V., Mongeon, P., y Larivière, V. (2018). Science, technology and innovation policies in Latin-America: fifteen years of scientific output, impact and international collaboration. In R. Costas, T. Franssen y A. Yegros-Yegros (Edits.), Proceedings of the 23rd International Conference on Science and Technology Indicators (STI 2018) (pp. 1450-1459). Leiden, The Netherlands. Recuperado de https://openaccess.leidenuniv.nl/bitstream/handle/1887/65272/STI2018_paper_236.pdf?sequence=1

Santa, S. y Herrero-Solana, V. (2010). Producción cientí­fica de América Latina y el Caribe: una aproximación a través de los datos de Scopus, 1996–2007. Revista interamericana de bibliotecologí­a, 33(2), 379-400. Recuperado de https://revistas.udea.edu.co/index.php/RIB/article/view/7648

Shelton, R.D., y Leydesdorff, L. (2012). Publish or patent: Bibliometric evidence for empirical trade-offs in national funding strategies. Journal of the American Society for Information Science and Technology, 63(3), 498-511. https://doi.org/10.1002/asi.21677

Smith, P-G. y Phipps, J. B. (1984). Consensus trees in phenetic analysis. Taxon, 33(4), 586-594. https://doi.org/10.2307/1220776

Sneath, P. H. A. & Sokal, R. E. (1973). Numerical taxonomy. San Francisco: W.H. Freeman Co.

Sokal, R. R. (1986). Phenetic taxonomy: theory and methods. Annual review of ecology and systematics, 17, 423-442. https://doi.org/10.1146/annurev.es.17.110186.002231

Sokal, R. R. & Rohlf, F. J. (1962). The comparison of dendrograms by objective methods. Taxon, 11, 33-40. https://doi.org/10.1146/annurev.es.17.110186.002231

Traverso. J. V., Ortiz-Jaureguizar, E., Miguel, S. E. & Posadas, P. (2020). Relaciones de similitud y valor discriminatorio de los indicadores de Scimago Journal and Country Rank. Un análisis basado en las revistas generalistas de antropologí­a (2008-2017). Revista general de información y documentación, 30(1), 261-296. https://dx.doi.org/10.5209/rgid.70070

van Raan, A. F. J. (2006). Comparisons of the Hirsch-index with standard bibliometric indicators and with peer judgment for 147 chemistry research groups. Scientometrics, 67(3), 491-502. https://doi.org/10.1556/Scient.67.2006.3.10

Vessuri, H., Guedon, J. C. & Cetto, A. M. (2014). Excellence or quality? Impact of the current competition regime on science and scientific publishing in Latin America and its implications for development. Current Sociology, 62(5), 647-665. https://doi.org/10.1177/0011392113512839

Vinkler, P. (2008). Correlation between the structure of scientific research, scientometric indicators and GDP in EU and non-EU countries. Scientometrics, 74, 237–254. https://doi.org/10.1007/s11192-008-0215-z

Zacca-González, G., Chinchilla-Rodrí­guez, Z., Vargas-Quesada, B. & Moya-Anegón, F. de. (2014). Bibliometric analysis of regional Latin America's scientific output in Public Health through SCImago Journal & Country Rank. BMC Public Health, 14, 632. https://doi.org/10.1186/1471-2458-14-632

Zenteno-Saví­n, T., Oliveira Beleboni, R. & Hermes-Lima, M. (2007). The cost of Latin American science. Introduction for the second issue of CBP-Latin America. Comparative biochemistry and physiology, 146(4), 463-469. https://doi.org/10.1016/j.cbpa.2006.06.044