Input/output indicators of Ibero-American science: how similar are the classifications based on the RICYT and Scimago indicators?
Main Article Content
Abstract
The objective of this study is to evaluate the congruence between the country classifications obtained from the Scimago Journal and Country Rank (SCIJCR) indicators, and those provided by the RICYT, taking as study units 11 Ibero-American countries, during 2006-2017. Thirty-four input/output indicators were taken as variables, 11 from SCIJCR, and 23 from RICYT. The similarity relationships among the countries and the indicators were represented by means of phenograms (Ward's method) and the congruence among the classifications of the countries was represented by strict consensus trees and quantified by means of a consensus index. The main conclusions of the study indicate that: 1) The classification of countries based on the 34 indicators corresponds to their size (e.g., socioeconomic development, population) and to the respective scientific traditions; 2) The indicators show a complex grouping patterns, not observing groupings based on the different typologies (e.g., production, impact, input, context); 3) The vast majority of the SCIJCR indicators show close mutual links, producing redundant information; 4) The percentage of international collaboration is only related to values ”‹”‹of moderate similarity with the citations per document, so it does not agree with the idea that the number of citations is directly proportional to international collaboration; 5) Taking into account the results obtained, the most profitable investments in terms of production, impact, and impact and production, are those measured by graduation indicators (graduates), R&D spending (in dollars, expressed in PPP), and number of researchers in R&D; 6) The lack of congruence observed when comparing country rankings from only one source (i.e., SCIJCR or RICYT) contradicts the simplistic idea that scientific results can be predicted only from invested resources; 7) Comparing the classification of countries based on all the indicators with those produced based on one or the other (i.e., SCIJCR or RICYT) produces few common groups. This can be explained from issues intrinsic to the analysis, such as the different number of indicators, and the redundancy of the information provided by the vast majority of the SCIJCR. This means that the SCIJCR indicators have a lower weight than those of the RICYT, when it comes to differentiating groups of countries.
Downloads
Article Details
References
Adams, J. D., Black, G. C., Clemmons, J. R. & Stephan, P. E. (2005). Scientific teams and institutional collaborations: evidence from U.S. universities, 1981-1999. Research policy, 34(3), 259-285. https://doi.org/10.1016/j.respol.2005.01.014
Albornoz, M. (1994). Indicadores en ciencia y tecnología. Redes, 1(1), 133-144. Recuperado de http://www.redalyc.org/articulo.oa?id=90711298006
Chavarro, D., Tang, P. & Rí fols, I. (2017). Why researchers publish in non-mainstream journals: Training, knowledge bridging, and gap filling. Research policy, 46, 1666-1680. http://dx.doi.org/10.1016/j.respol.2017.08.002
Chinchilla-Rodríguez, Z., Zacca-González, G., Vargas-Quesada, B. & Moya-Anegón, F. de. (2015). Latin American scientific output in Public Health: combined analysis using bibliometric, socioeconomic and health indicators. Scientometrics, 102, 609-628. https://doi.org/10.1007/s11192-014-1349-9
Crisci, J. V., y López Armengol, M. F. (1983). Introducción a la teoría y práctica de la taxonomía numérica. Washington: Organización de los Estados Americanos.
De Filippo, D. F., Morillo, F. & Fernández, M. T. (2008). Indicadores de colaboración científica del CSIC con Latinoamérica en bases de datos internacionales. Revista española de documentación científica, 31(1), 66-84. http://dx.doi.org/10.3989/redc.2008.v31.i1.413
Falagas, M. E., Kouranos, V. D., Arencibia-Jorge, R., y Karageorgopoulos, D. E. (2008). Comparison of SCImago journal rank indicator with journal impact factor. The FASEB journal, 22, 2623-2628. https://doi.org/10.1096/fj.08-107938
Farris, J. S. (1971). The hypothesis of nonspecificity and taxonomic congruence. Annual Review of ecology and systematics, 2, 277-302. https://doi.org/10.1146/annurev.es.02.110171.001425
Filliben, J. J. (1975). The probability plot correlation coefficient test for normality. Technometrics, 17(1), 111-117. https://doi.org/10.1080/00401706.1975.10489279
García-Pachón, E. & Arencibia-Jorge, E. (2014). Comparación del factor de impacto y el índice SCImago Journal Rank en las revistas del sistema respiratorio. Archives of bronconeumology, 50(7), 308-309. https://doi.org/10.1016/j.arbres.2013.10.006
Gingras, Y. & Khelfaoui, M. (2018). Assessing the effect of the United States’ “citation advantage” on other countries’ scientific impact as measured in the Web of Science (WoS) database. Scientometrics, 114(2), 517-532. https://doi.org/10.1007/s11192-017-2593-6
Hammer, í˜., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia electronica, 4(1), 1-9.
Hermes-Lima, M., Santos, N.C.F., Alencastro, A.C.R., y Ferreira, S.T. (2007). Whither Latin America? trends and challenges of science in Latin America. IUBMB Life, 59, 199–210. https://doi.org/10.1080/15216540701258751
Inglesi-Lotz, R. & Pouris, A. (2013). The influence of scientific research output of academics on economic growth in South Africa: an autoregressive distributed lag (ARDL) application. Scientometrics, 95(1), 129-139. https://doi.org/10.1007/s11192-012-0817-3
Inglesi-Lotz, R., Chang, T. & Gupta, R. (2015). Causality between research output and economic growth in BRIC. Quality and quantity, 49, 167-176. https://doi.org/10.1007/s11135-013-9980-8
King, D. A. (2004). The scientific impact of nations. What different countries get for their research spending? Nature, 430, 311–316. https://doi.org/10.1038/430311a
Lee, L. C., Lin, P. H., Chuang, Y. W. & Lee, Y. Y. (2011). Research output and economic productivity: A Granger causality test. Scientometrics, 89, 465–478. https://doi.org/10.1007/s11192-011-0476-9
Leydesdorff, L. (2005). Evaluation of research and evolution of science indicators. Current science, 89(9), 1510-1517.
Mickevich, M. F. (1978). Taxonomic congruence. Systematic zoology, 27, 143-158. https://doi.org/10.2307/2412969
Miguel, S. E. y Moya-Anegón, F. de. (2009). La ciencia argentina bajo la lupa de los indicadores cienciométricos. Una mirada crítica de la realidad científica argentina. La Plata: Al Margen.
Moya-Anegón, F. de & Herrero-Solana, V. (1999). Science in America Latina: a comparison of bibliometric and scientific-technical indicators. Scientometrics, 46(2), 299–320. https://doi.org/10.1007/BF02464780
Murtagh, F. & Legendre, P. (2014). Ward's hierarchical agglomerative clustering method: which algorithms implement Ward's criterion? Journal of classification, 31(3): 274-295.
Ortiz-Jaureguizar, E. (2019). Exploración de relaciones entre indicadores bibliométricos y otros indicadores del contexto económico, social y productivo. En S. E. Miguel (Coord.), Actas del Workshop Iberoamericano de Estudios métricos de la actividad científica orientada a temas locales/regionales (La Plata, 2018) (pp. 109-115). Universidad Nacional de La Plata, Facultad de Humanidades y Ciencias de la Educación. Recuperado de https://www.libros.fahce.unlp.edu.ar/index.php/libros/catalog/book/130
Ortiz-Jaureguizar, E.; Miguel, S. E.; González, C. & Posadas, P. (2019). La producción científica argentina en el contexto mundial: un análisis comparado empleando los indicadores de Scimago Journal and Country Rank. En S. E. Miguel (Coord.), Actas de las V Jornadas de intercambio y reflexión acerca de la investigación en Bibliotecología, La Plata, 23 y 24 de noviembre de 2017 (pp. 175-195). Recuperado de http://www.memoria.fahce.unlp.edu.ar/libros/pm.725/pm.725.pdf
Ortiz-Jaureguizar, E., Miguel, S. E. y Posadas, P. (2015). Relaciones de similitud y valor discriminativo de los indicadores bibliométricos: los indicadores de Scimago Journal & Country Rank en las revistas generalistas de Paleontología. En Actas de las 4as Jornadas de intercambio y reflexión acerca de la investigación en Bibliotecología. Recuperado de http://jornadabibliotecologia.fahce.unlp.edu.ar/jornadas-2015/archivos-pdf/jirib2015 _ORTIZ_texto.pdf
Palacio, F. X., Apodaca, M. J. y Crisci, J. V. (2020). Análisis multivariado para datos biológicos: teoría y su aplicación utilizando el lenguaje R. Ciudad Autónoma de Buenos Aires: Fundación de Historia Natural Félix de Azara.
Persson, O., Glänzel, W. & Danell, R. (2004). Inflationary bibliometrics values: the role of scientific collaboration and the need for relative indicators in evaluative studies. Scientometrics, 60(3), 421–432. https://doi.org/10.1023/B:SCIE.0000034384.35498.7d
Ploszaj, A., Celinska-Janowicz, D. & Olechnicka, A. (2018). Core-periphery relations in international research collaboration. In R. Costas, T. Franssen y A. Yegros-Yegros (Edits.), Proceedings of the 23rd International Conference on Science and Technology Indicators (pp. 1322-1327). Leiden, The Netherlands. Recuperado de https://openaccess.leidenuniv.nl/bitstream/handle/1887/65273/STI2018_paper_218.pdf?sequence=1
Ríos Gómez, C. & Herrero-Solana, V. (2005). La producción científica latinoamericana y la ciencia mundial: una revisión bibliográfica (1989-2003). Revista interamericana de bibliotecología, 28(1), 43-61. Recuperado de http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-09762005000100003&lng=en&tlng=es
Rohlf, F. J. (1982). Consensus indices for comparing classifications. Mathematical biosciences, 59(1), 131-144. https://doi.org/10.1016/0025-5564(82)90112-2
Rohlf, F. J. (2018). NTSYSpc: Numerical Taxonomy System. ver. 2.21c. New York: Applied Biostatistics, Inc., Port Jefferson.
Sancho Lozano, R. (2002). Indicadores de los sistemas de ciencia, tecnología e innovación. Economía industrial, 343, 97-109. Recuperado de https://www.mincotur.gob.es/Publicaciones/Publicacionesperiodicas/EconomiaIndustrial/RevistaEconomiaIndustrial/343/097-SANCHO.pdf
Sandoval-Romero, V., Mongeon, P., y Larivière, V. (2018). Science, technology and innovation policies in Latin-America: fifteen years of scientific output, impact and international collaboration. In R. Costas, T. Franssen y A. Yegros-Yegros (Edits.), Proceedings of the 23rd International Conference on Science and Technology Indicators (STI 2018) (pp. 1450-1459). Leiden, The Netherlands. Recuperado de https://openaccess.leidenuniv.nl/bitstream/handle/1887/65272/STI2018_paper_236.pdf?sequence=1
Santa, S. y Herrero-Solana, V. (2010). Producción científica de América Latina y el Caribe: una aproximación a través de los datos de Scopus, 1996–2007. Revista interamericana de bibliotecología, 33(2), 379-400. Recuperado de https://revistas.udea.edu.co/index.php/RIB/article/view/7648
Shelton, R.D., y Leydesdorff, L. (2012). Publish or patent: Bibliometric evidence for empirical trade-offs in national funding strategies. Journal of the American Society for Information Science and Technology, 63(3), 498-511. https://doi.org/10.1002/asi.21677
Smith, P-G. y Phipps, J. B. (1984). Consensus trees in phenetic analysis. Taxon, 33(4), 586-594. https://doi.org/10.2307/1220776
Sneath, P. H. A. & Sokal, R. E. (1973). Numerical taxonomy. San Francisco: W.H. Freeman Co.
Sokal, R. R. (1986). Phenetic taxonomy: theory and methods. Annual review of ecology and systematics, 17, 423-442. https://doi.org/10.1146/annurev.es.17.110186.002231
Sokal, R. R. & Rohlf, F. J. (1962). The comparison of dendrograms by objective methods. Taxon, 11, 33-40. https://doi.org/10.1146/annurev.es.17.110186.002231
Traverso. J. V., Ortiz-Jaureguizar, E., Miguel, S. E. & Posadas, P. (2020). Relaciones de similitud y valor discriminatorio de los indicadores de Scimago Journal and Country Rank. Un análisis basado en las revistas generalistas de antropología (2008-2017). Revista general de información y documentación, 30(1), 261-296. https://dx.doi.org/10.5209/rgid.70070
van Raan, A. F. J. (2006). Comparisons of the Hirsch-index with standard bibliometric indicators and with peer judgment for 147 chemistry research groups. Scientometrics, 67(3), 491-502. https://doi.org/10.1556/Scient.67.2006.3.10
Vessuri, H., Guedon, J. C. & Cetto, A. M. (2014). Excellence or quality? Impact of the current competition regime on science and scientific publishing in Latin America and its implications for development. Current Sociology, 62(5), 647-665. https://doi.org/10.1177/0011392113512839
Vinkler, P. (2008). Correlation between the structure of scientific research, scientometric indicators and GDP in EU and non-EU countries. Scientometrics, 74, 237–254. https://doi.org/10.1007/s11192-008-0215-z
Zacca-González, G., Chinchilla-Rodríguez, Z., Vargas-Quesada, B. & Moya-Anegón, F. de. (2014). Bibliometric analysis of regional Latin America's scientific output in Public Health through SCImago Journal & Country Rank. BMC Public Health, 14, 632. https://doi.org/10.1186/1471-2458-14-632
Zenteno-Savín, T., Oliveira Beleboni, R. & Hermes-Lima, M. (2007). The cost of Latin American science. Introduction for the second issue of CBP-Latin America. Comparative biochemistry and physiology, 146(4), 463-469. https://doi.org/10.1016/j.cbpa.2006.06.044